
INT. J. NUM. METH. HEAT FLUID FLOW, VOL. 4, 159-172 (1994)

VECTORIZED STRONGLY IMPLICIT SOLVING
PROCEDURE FOR A SEVEN-DIAGONAL COEFFICIENT

MATRIX

H.-J. LEISTER AND M. PERIĆ

Lehrstuhl für Strömungsmechanik, Universitāt Erlangen-Nürnberg, Cauerstr. 4, D-8520 Erlangen, Germany

ABSTRACT
The paper presents an extension of Stone's1 strongly implicit procedure for solving linear equation systems
resulting from the discretization of partial differential equations to three-dimensional problems. The solver
is applicable to seven-diagonal coefficient matrices, as are obtained when central-difference approximations
are used for discretization. The algorithm is implemented in a way which allows vector processing on
modern supercomputers, in spite of its recursive structure. Other solvers, using incomplete lower-upper
decomposition (ILU), can be vectorized in the same way. Test calculations show solver performance of
about 150 Mflops on CRAY-YMP and over 200 Mflops on FUJITSU-VP200 computers. A listing of the
FORTRAN code is provided.

KEY WORDS Implicit matrix solver Vectorization ILU decomposition

INTRODUCTION

Solution of large linear equation systems uses most of computing time in computational fluid
dynamics (CFD) codes. Due to the non-linearity and coupling of partial differential equations,
outer iterations must be used to update the coefficients and source terms in the linear equation
systems. These are also solved iteratively, and iterations within the solver are called inner
iterations. Most CFD codes solve for the velocity components and pressure or pressure correction
in a sequential way. In order to enforce the continuity requirement, the pressure or pressure
correction equation has to be solved to a tighter tolerance than other equations for each outer
iteration. This equation is of Poisson type in case of incompressible flows and usually has
Neumann boundary conditions on all boundaries. The efficiency of the CFD code strongly
depends on the efficiency of the solver for the linear equation systems.

One of the most popular iterative solvers for CFD is the Stone's strongly implicit (SIP) solver1.
Stone derived it for two-dimensional partial differential equations, but it can easily be extended
to three-dimensional (3-D) problems. It has proven significantly more efficient than successive
overrelaxation (SOR), alternate direction implicit (ADI) or incomplete lower-upper
decomposition (ILU) solvers, and it requires substantially less computing operations per inner
iteration than conjugate gradient (CG) methods, especially for non-symmetric matrices. SIP
solver has also been used as a preconditioner in a CG solver, where it showed improved
performance compared with standard incomplete Cholesky (IC) or ILU preconditioners2.
However, the ILU-based solvers (and therefore also SIP solver and CG solvers which use ILU

9061-5539/94/020159-14$2.00 Received February 1993
© 1994 Pineridge Press Ltd Revised September 1993

160 H.-J. LEISTER AND M. PERIĆ

or similar methods as preconditioners) have the disadvantage that they use a recursive algorithm
and are, therefore, not vectorizable or parallelizable in a straightforward manner.

In this paper we present a SIP solver for 3-D problems which is vectorized to a large degree,
and which can easily be implemented in any 3-D, CFD code. The performance of the solver is
demonstrated for several test problems and vector computers. A FORTRAN code with a
description of the main variables is given in the appendix. Other solvers based on ILU can be
vectorized in the same way.

DESCRIPTION OF ALGORITHM

Linear algebraic equation systems resulting from the discretisation of 3-D transport equations
have the general form:

[A]{Φ} = {Q} (1)
where [A] is an N x N square coefficient matrix (with N being the number of grid nodes), {Φ}
is the vector matrix of the nodal variable values ordered in a certain way and {Q} is the
corresponding vector matrix of source terms. We consider here the case of central difference
approximations and a structured grid with Ni nodes in ith coordinate direction (N = Nx·Ny·Nz).
The ordering of nodes is such that surfaces z = const. (constant index K) are stacked one above
another, and within one surface index J increases first (y-direction), then index I (x-direction).
The one-dimensional storage index of the variable Φ, ijk, is calculated from the three-dimensional
grid indices i, j and k as follows:

ijk = (k- 1)·NIJ + (i - 1)·NJ + j
with

i=1,...,NI; j=1,...,NJ; k = 1 , . . . ,NK (2)
NIJ = NI·NJ

where NI, NJ and NK denote Nx, Ny and Nz, respectively. Other ordering of nodes is also
possible. For this choice the matrix [A] has the structure shown in Figure 1. It has non-zero
elements only on seven diagonals. The iterative solution of (1) requires that an iteration matrix
[M] be chosen, and the process of solution proceeds as follows:

[M]{Φm+1} = {Q} -[A- M]{Φm}

SOLVING PROCEDURE FOR A SEVEN-DIAGONAL COEFFICIENT MATRIX 161

or
[M]{δm} = {Rm} (3)

where {δm} is the change in variable Φ from iteration m to m + 1 and {Rm} is the residual after
the mth iteration, {Rm} = {Q} — [A]{Φm}. For an iterative solution method to be efficient, the
matrix [M] should be as close to [A] as possible. The SIP method of Stone1 uses a product of
two triangular matrices [L] and [U] (for lower and upper) as the iteration matrix, i.e.:

[M] = [L]·[U] = [A] + [N] (4)
The standard ILU-decomposition choses patrices [L] and [U] such that they have non-zero

elements only on those diagonals where matrix [A] has non-zero elements, and requires that
the elements of [M] are equal to the corresponding elements of [A]. This method, however,
does not converge rapidly, since the resulting matrix [N] is not small, i.e.:

[N]{Φ} ≠ {0} (5)
Stone has realized that the solutions of partial differential equations are usually smooth

functions of space and suggested a method of selecting the elements of [L] and [U] with the
same sparsity as in ILU, but minimizing (5). The matrix [M] has six additional diagonals with
non-zero elepents, compared with matrix [A], cf. Figure 2. If we set the elements on the main
diagonal of [U] arbitrarily to unity, the elements of [M] at node P, denoted by subscript ijk,
can be expressed in terms of elements of [L] and [U] as follows:

MB,ijk = LB,ijk

MBN.ijk
 = LB.ijkUN.ijk-NIJ

MBE.ijk
 = LB,ijkUE.ik_NIJ

MW,ijk =LW,ijk

MNW,ijk = LW,ijk-NJ

MS,ijk
 = LS,ijk

MP,ijk = LB,ijk UT,ijk-NIJ + LW,ijkUE,ijk + LS,ijkUN,ijk + LP,ijk (6)
MN,ijk = LP,ijkUN,ijk

MSE,ijk = LS,ijkUE,ijk-1

ME,ijk = LP,ijkUE,ijk

MTW,ijk = LW,ijkUT,ijk-NJ

MTS,ijk = LS,ijkUT,ijk-1

MT,ijk = LP,ijkUT,ijk

162 H.-J. LEISTER AND M. PERIĆ

The bold face printed elements correspond to nodes marked with open symbols in Figure 1. In
the standard ILU method, the matrix [N] has the six diagonals corresponding to the bold face
printed elements in (6), while the other elements of [M] are set equal to the corresponding
elements of [A]. From these relations, the elements of [L] and [U] can be uniquely calculated.
However, as noted before, [N]{Ф} is not zero and convergence is only slightly better than in
ADI methods.

Stone1 recognized that, by allowing [N] to have, in addition, non-zero elements on the
diagonals of [A] , and by using the smoothness property of the solutions of partial differential
equations, faster convergence can be achieved. The idea was to provide a contribution in [N]{Ф}
from the elements of the diagonals found in [A] such that the contribution of the six diagonals
not present in [A] is partially cancelled, leading to:

[N]{Ф} ≈ {0} (7)

The above equation can be written for a single node as follows:

NBΦB + NTΦT + NSΦS + NNΦN + NWΦW + NEΦE + NPΦP

+ MBNΦBN + MBEΦBE + MNWΦNW + MSEΦSE + MTWΦTW + MTSΦTS ≈ 0 (8)

where the identity of elements of [N] and [M] at the diagonals not present in [A] is assumed.
The problem is now to define the elements NB, NT, NS, NN, NE, NW and NP, such that the above
equation is satisfied, but without introducing any additional unknowns. The Stone's idea was
to write approximations for ΦBN, ΦBE, ΦNW, ΦES, ΦTW, ΦTS IN terms of 'principal' nodal values
ΦP, ΦE, ΦW, ΦN, ΦS, ΦT and ΦB of the form:

ΦBN ≈ a(ΦB + ΦN - ΦP)

ΦNW ≈ a(ΦN + ΦW + ΦP) etc. (9)

where 0 < a < 1. From the assumption that (cf. (9))

MBN [ΦBN - α(ΦB + ΦN - ΦP)] ≈ 0
M N W [ΦNW - α(ΦN + ΦW - ΦP)] ≈ 0 etc. (10)

the coefficients NB, NT, NS, NN, NW, NE and NP can be expressed through the bold face printed
elements of [M] of (6):

NB = — α(MBN + MBE)
NT = — α(MTW + MTS)
NS = — α(MSE + MTS)
NN = — α(MBN + MNW) (11)
NW = — α(MNW + MTW)
NE= — α(MSE + MBE)
NP = α(MBN + MBE + MNW + MSE + MTW + MTS)

If approximations (9) are accurate, then (8) will hold when above expressions are used. By
requiring now that [M] = [A] + [N] and using expressions (6) and (11), the following equations

SOLVING PROCEDURE FOR A SEVEN-DIAGONAL COEFFICIENT MATRIX 163

for the calculation of the elements of [L] and [U] at ijkth node are obtained:

H1 = α(LB,ijk UN,ijk-NIJ + LW,ijkUN,ijk-NJ)

H2 = α(LB,ijkUE,ijk-NJ + LS,ijk UE,ijk-1)
H3 = α(LW,ijkUT,ijk-NJ + LS,ijk UT,ijk-1) (12)

LP,ijk = AP,ijk + H1 + H2 + H3 — LB,ijkUT,ijk-NIJ —LW,ijkUE,ijk-NJ — LS,ijkUN,ijk-1

UN,ijk = (AN,ijk
 — H1)/LP,ijk

UE,ijk = (AE,ijk
 — H2)/LP,ijk

UT,ijk = (AT,ijk
 — H3)/LP,ijk

The above equations must be solved in the order written. The elements of [L] and [U]
corresponding to the boundary nodes are assumed to be zero.

Since the iteration matrix [M] is made of the product of triangular matrices [L] and [U],
solution of (3) is very cost effective. We first calculate an auxiliary vector matrix {V} as:

{Vm} = [L - 1]{Rm} (13)

and then the increment vector matrix {δ}:

{δm} = [U -1]{Vm} (14)

These two equations are solved easily by forward and backward substitution as follows:

where

is the residual at mth iteration at node ijk. For fixed a the calculation of elements of [L] and
[U] matrices, (12), needs to be performed only once. For subsequent iterations, only (17), (15)
and (16) need to be solved. Recalculation of (12) with different a reduces the number of iterations
when an accurate solution is required, cf. Stone1. However, in CFD applications the linear
equation systems are not solved exactly, since the matrix elements need to be updated due to
non-linearity and coupling of equations. Since the convergence of SIP solver is rather rapid at
the beginning, constant values of a are usually used.

164 H.-J. LEISTER AND M. PERIĆ

PERFORMANCE OF THE SOLVER

When the equations for the velocity components, pressure or pressure correction, temperature,
etc., are solved sequentially as is the case in SIMPLE-like algorithms3, the linear equation
systems need not be solved accurately for given coefficient and source matrices, [A] and {Q}.
Reduction of residual levels by one order of magnitude is usually sufficient before the coefficients
and source terms are updated. For convection/diffusion equations, with Dirichlet boundary
conditions on at least one boundary, one or two iterations are usually sufficient. The pressure
or pressure correction equation for incompressible flows usually has Neumann boundary
conditions on all boundaries and converges slowly; it usually requires 5-10 SIP iterations. The
performance of the SIP-solver in a typical fluid flow and heat transfer problem is demonstrated
for a test case presented in Figure 3. It shows a circular cylinder lying on its side, with left base
cold and right base hot. Calculations were performed at Rayleigh numbers of 1000 and 10000
on a grid with 32 x 24 x 48 control volumes. Velocity vectors for the middle circular cross
section and both velocity vectors and isotherms for the vertical axial cross section and Ra = 10000
are also shown in Figure 3. The vertical axial cross-section shows flow and isotherms patterns
similar to those of two-dimensional buoyancy-driven cavities, cf. Hortmann et al.4. However
the circular cross-section reveals a very strong secondary flow with four counter-rotating eddies.
In Figure 4 the change of the sum of absolute residuals with iterations is shown for the U- and
p'-equation in the test flow problem. The level of residuals is reduced by more than two orders
of magnitude in 3 iterations for U and in 8 iterations for p', for both Rayleigh numbers and a

SOLVING PROCEDURE FOR A SEVEN-DIAGONAL COEFFICIENT MATRIX 165

given grid. The number of required iterations increases with grid refinement. However, linear
equation systems - as noted above - need not be accurately solved, so reduction of residual
levels by one order of magnitude usually suffices; in the present case one inner iteration for U,
V and T and 4 for p' were found to be optimum.

In order to investigate the dependence of the convergence behaviour on the parameter a, a
test problem with a well known analytical solution were chosen. Laplace equation:

(18)

was solved using finite difference discretization on uniform grids and central difference
approximation of the second derivatives. The boundary conditions are of Dirichlet type:

Φ(0, x, z) = Φ(x, 0, z) = Φ(x, y, 0) = 0
Φ(1, y, z) = yz, Φ(x, 1, z) = xz, Φ(x, y, 1) = xy

The analytical solution of this problem is Φ(x, y, z) = xyz. Calculations were performed with
different values of a in the range 0 < a < 1 and for various grids. The iterative procedure was
stopped when the sum of absolute residuals had fallen by four orders of magnitude. The
performance of SIP solver and its dependence on a is presented in Figure 5. The finer the grid
is, the more pronounced is the dependence of convergence rate on a. For a grid with 11 x 11 x 11
nodes, the solver needs about 2.5 times more iterations for a = 0 (which corresponds to the
standard ILU) than with a = 0.98. For a 21 x 21 x 21 nodes grid the difference is already more
than factor 6, and for 41 x41 x41 nodes the factor is over 20. This indicates the effectiveness
of Stone's approximation and the superiority of SIP over standard ILU. The facts that the
optimum value of a is problem dependent and that the efficiency strongly depends on the value
of a are the undesirable features of the SIP solver. However, values of a ≈ (0.92-0.94) were
found to give results close to the optimum ones for a wide range of problems; these values are
suggested for general use.

166 H.-J. LEISTER AND M. PERIĆ

For the same test problem and a 41 x 41 x 41 nodes grid, ADI solver5 is about 10 times
slower than SIP, while the symmetric CG method with IC preconditioning6 needs about the
same time (but less iterations) to reach a solution of the same accuracy as the SIP. However,
SIP is applicable to non-symmetric matrices as well, while the above CG method is not. A
non-symmetric version of the CG method requires twice as many computing operations per
iteration than the symmetric version, and about three times as many as the SIP solver. Since
the convection-diffusion problems from CFD result in non-symmetric matrices, SIP is obviously
a good choice when structured grids are used. The CG solvers, on the other hand, can be used
on unstructured meshes as well. As already noted, SIP solver can also be used as a preconditioner
in a CG solver instead of IC and ILU methods.

VECTORIZATION OF THE SOLVER

The algorithm as described by (12), (15) and (16), is strongly recursive. A recursive structure
corresponds to data dependencies which usually prevent a programmer from taking advantage
of vector computers. Analysing the data dependencies in (12), however, shows that the recursive
structure of SIP can partially be resolved. Let us define field variable sets:

= {Φijk with i + j + k = l} (19)
Superscript] describes plane cuts through the computational space as indicated in Figure 6.
From (12) and (15) it can be seen that for the calculation of the elements of [L], [U] and {V}
corresponding to , field variables with index values ijk — 1, ijk — NJ and ijk — NIJ are
necessary. For these field variables it follows from (2) that i + j + k = l — 1 is valid and hence
they are members of . This provides for an effective vectorization, because all elements of

can be treated as a vector. The ILU decomposition and forward substitution ((12) and (15))

SOLVING PROCEDURE FOR A SEVEN-DIAGONAL COEFFICIENT MATRIX 167

start with the inner point having the smallest l, i.e. i = 2, j = 2, k = 2 or lmin = 6, and end with
the inner point having the largest value of l, i.e. lmax = NI + NJ + NK — 3, i.e.:

(20)

In the backward substitution (16) the opposite structure is necessary:
(21)

In order to be able to perform operations from (12), (15) and (16) in vector mode, we have
to create lmax - lmin + 1 vectors {Φl} and process them in a vector loop which runs from lmin to
lmax or in the reverse order. One could store the field variables in this fashion and have the
whole code structured in the above sense, as done by Yoon and Kwak7 in their LU-solver.
However, these vectors are of variable length and are usually not processed as efficiently as
when the vectors contain data from one coordinate surface, e.g. k = const. We therefore prefer
to store variable values as described by (2), and process all non-recursive loops (such as (17))
for the calculation of residuals, or calculating elements of [A] and {Q}) by simply cutting the
vector matrices {Φ} in vectors {Φk}, k = 1,...,Nk. Processing the recursive loops in two integer
arrays have to be predefined before calling SIP for the first time. One - mip(l) - defines the
number of nodes belonging to surfaces where l runs from lmin to lmax. The other - ijksip(n)
- identifies the ijk storage indices of nodes within one SIP-vector, where n runs from mip(l) + 1
to mip(l + 1). The basic idea is that for all l = lmin,..., lmax the possible k-index range K1 is
determined. In the next loop variable k runs over Kl. Now the dependence of the i-index range
Jl on l and k is analysed. The third loop runs then over Il range of i. Since the index j is given
by l - k - i, the correlation between the surface indices and the ijk storage indices can easily
be calculated. Further details are given in the appendix and subroutine VECIND.

The performance of the vectorized version of SIP is analysed on both the flow test problem
of Figure 3 and on the Laplace equation model presented above. First the dependence of
performance (measured in millions of floating point operation per second within the SIP-solver,
Mflops) on grid fineness is studied. Figure 7 shows performance of the vectorized SIP solver on
CRAY-YMP for the flow and heat transfer problem of Figure 3 for five levels of systematic grid
refinement, starting from 4 x 3 x 6 CV up to 64 x 48 x 96 CV. Scalar performance is about
20 Mflops. The lower vector performance for coarser grids is due to short vectors; once the grid
is fine enough so that the optimum vector length is reached, further grid refinement does not
lead to improvement of performance. It should also be noted that the most unfavourable grid
is the one with the same number of nodes in each direction, since the vector length of {Φl} varies
all the time. If the number of nodes in one direction is significantly higher than in the other two

168 H.-J. LEISTER AND M. PERlĆ

SOLVING PROCEDURE FOR A SEVEN-DIAGONAL COEFFICIENT MATRIX 169

directions, then there is a range of indices l where the length of vector {Φl} is constant, which
is desirable for optimum vector processing.

Finally, performance of the vectorized SIP-solver for the Laplace problem is studied using
uniform grids with the same number of nodes in each direction. Results of calculations on
CRAY-YMP and FUJITSU VP200 are shown in Figure 8, where the speed in Mflops is plotted
against the number of nodes in one direction Ni. Scalar performance on FUJITSU VP200 is
about 15 Mflops. The grid is refined gradually, so that many more points are obtained on a
curve which is otherwise similar to that of Figure 7. Surprisingly, on both computers there is a
sudden drop of performance for Ni = 41 and Ni = 81. It is especially severe for Ni = 81, when
the FUJITSU performance drops from over 200 Mflops to well below 100. This phenomenon
has to do with internal memory access, which appears to be unfavourable only for certain
numbers of grid nodes.

CONCLUSIONS

A strongly implicit solution method, after Stone1, has been extended to 3-D problems and
implemented in a CFD code using finite volume and finite difference discredization. In sequential
solution methods for coupled equations like SIMPLE, one inner iteration in the SIP-solver per
outer iteration (coefficient update) is sufficient for all equations except the pressure-correction
equation, which needs 4-10 inner iterations to reduce the residual level by approximately one
order of magnitude. The choice of the parameter a influences the rate of convergence, the effect
becoming more pronounced as the grid is refined. The superiority of SIP over standard ILU
solution method also increases with grid refinement. Values of a between 0.92 and 0.94 were
found to produce nearly optimum results for a wide variety of flow problems.

In spite of the recursive structure of the solution algorithm, vectorization in SIP solver was
achieved by avoiding data dependencies through indirect addressing and sweeping through the
domain along diagonal planes. Vectorized CFD code reaches speeds of over 200 Mflops on
CRAY-YMP computer in most routines, with SIP-solver performance of about 150 Mflops. The
computing speed is thus increased through vectorization by a factor of 10 (on CRAY YMP) to
20 (on FUJITSU VP200). Due to indirect addressing and variable vector length, in some cases
the performance of the SIP solver may drop suddenly for a specific number of grid nodes in a
particular direction. The remedy in such a case is to add or to subtract one grid point in one
coordinate direction. Other solvers, like ILU and many variants of CG solvers with
preconditioners based on ILU or IC, can be vectorized using the same strategy. The usual data
structure and vectorization used in the rest of a CFD code can be retained. Due to its numerical
efficiency, fast convergence and low number of computing operations, vectorized SIP solver is
recommended as an effective tool for solving linear equation systems resulting from discretization
of partial differential equations.

REFERENCES

1 Stone, H. L. Iterative solution of implicit approximations of multidimensional partial differential equations, SIAM
J. Num. Anal., 5, 530-558 (1968)

2 Ferziger, J. H. Private communication, Stanford University (1992)
3 Perić, M. A finite volume method for the prediction of three-dimensional fluid flow in complex ducts, PhD Thesis,

University of London (1985)
4 Hortmann, M., Perić, M. and Scheuerer, G. Finite volume multigrid prediction of laminar natural convection:

bench-mark solutions, Int. J. for Num. Meth. Fluids, 11, 189-207 (1990)
5 Peaceman, D. W. and Rachford, H. H. The numerical solution of parabolic and elliptic differential equations, J. Soc.

Ind. Appl. Math., 3, 28-41 (1955)
6 Meijerink, J. A. and van der Vorst, H. A. Guidelines for the usage of incomplete decompositions in solving sets of

linear equations as they occur in practical problems, J. Comp. Physics, 44, 134-155 (1981)

170 H.-J. LEISTER AND M. PERIĆ

7 Yoon, S. and Kwak, D. Three-dimensional incompressible Navier-Stokes solver using lower-upper symmetric-Gauss-
Seidel algorithm, AIAA J., 29, 874-875 (1991)

APPENDIX

In order to implement the present solver in a CFD code which uses one-dimensional storage
described in (2), one needs to integrate the following two routines into the code: VECIND and
SIPVEC. The following text describes the meaning of the main variables from the two routines.

The blank common block contains NI, NJ and NK, whose meaning was described in the
text above. NIM, NJM and NKM correspond to NI — 1, NJ — 1 and NK — 1, respectively.
MAXIT is the maximum allowed number of inner iterations. LK(K) and LI(I) are defined as
(cf. (2)):

LK(K) = (K- 1)-NIJ, LI(I) = (I - 1)·NJ (22)
Arrays MIP(M) and IJKSIP(IJK) were described above and are defined in the routine VECIND.
RESMAX stands for the sum of absolute residuals normalized with its initial value which serves
as convergence criterion. ALFA is the parameter a, cf. (9) and (12).

The common block COEF contains elements of the coefficient matrix [A]. The elements of
the triangular matrix [L] are named BB, BS, BW and BP and correspond to LB, LS, LW and
LP from (12). P1, P2 and P3 correspond to H1, H2 and H3 of (12). The elements of [U] are
named BN, BE and BT and correspond to UN, UE and UT from (12). The elements of [L] and
[U] corresponding to the boundary modes (i = 1 or NI;j = 1 or NJ; k = 1 or NK) are assumed
equal to zero (default in the code).

The variable RES(IJK) is used to store the residual value at the grid nodes ((17); loop no.
30). The residuals are then overwritten with the values of {V}, cf. (15) (loop no. 50), and {V}
is finally overwritten by {δ}, cf. (15) (loop no. 60). FI stands for the dependent variable Ф; it
is passed as an argument by the calling routine and may represent velocity components,
temperature, pressure correction etc., RESH(J) is used to store the sum of absolute residuals
along the line ij = const. (z-direction), in order to avoid a long scalar loop like loop no. 40,
which calculates the total sum.

The instruction CDIR$ IV DEP is the CRAY-YMP directive to ignore vector dependencies,
since otherwise apparently recursive loops would be processed in scalar mode. The instructions
* VOCL LOOP, SCALAR and * VOCL LOOP, VECTOR are the directives of FUJITSU
VP200 computer forcing scalar and vector processing of the following loop, respectively. * VOCL
LOOP, NOVREC means on FUJITSU VP200 'no vector recurrences', which is analog to the
above CRAY-YMP directive. In the code, however, all FUJITSU directives start with a 'C' in
the first column and are therefore ignored by other computers (CRAY ignores FUJITSU
directives and vice versa).

The routine VECIND needs to be called only once, before the first execution of the routine
VECSIP. It runs in scalar mode, but due to the low number of operations and only one execution,
it does not reduce the efficiency of the code. Alternatively, the arrays MIP(M) and IJKSIP(IJK)
may be calculated while generating the grid or elsewhere and provided as input data.

SOLVING PROCEDURE FOR A SEVEN-DIAGONAL COEFFICIENT MATRIX 171

172 H.-J. LEISTER AND M. PERlĆ

