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ABSTRACT 
The paper presents an extension of Stone's1 strongly implicit procedure for solving linear equation systems 
resulting from the discretization of partial differential equations to three-dimensional problems. The solver 
is applicable to seven-diagonal coefficient matrices, as are obtained when central-difference approximations 
are used for discretization. The algorithm is implemented in a way which allows vector processing on 
modern supercomputers, in spite of its recursive structure. Other solvers, using incomplete lower-upper 
decomposition (ILU), can be vectorized in the same way. Test calculations show solver performance of 
about 150 Mflops on CRAY-YMP and over 200 Mflops on FUJITSU-VP200 computers. A listing of the 
FORTRAN code is provided. 
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INTRODUCTION 

Solution of large linear equation systems uses most of computing time in computational fluid 
dynamics (CFD) codes. Due to the non-linearity and coupling of partial differential equations, 
outer iterations must be used to update the coefficients and source terms in the linear equation 
systems. These are also solved iteratively, and iterations within the solver are called inner 
iterations. Most CFD codes solve for the velocity components and pressure or pressure correction 
in a sequential way. In order to enforce the continuity requirement, the pressure or pressure 
correction equation has to be solved to a tighter tolerance than other equations for each outer 
iteration. This equation is of Poisson type in case of incompressible flows and usually has 
Neumann boundary conditions on all boundaries. The efficiency of the CFD code strongly 
depends on the efficiency of the solver for the linear equation systems. 

One of the most popular iterative solvers for CFD is the Stone's strongly implicit (SIP) solver1. 
Stone derived it for two-dimensional partial differential equations, but it can easily be extended 
to three-dimensional (3-D) problems. It has proven significantly more efficient than successive 
overrelaxation (SOR), alternate direction implicit (ADI) or incomplete lower-upper 
decomposition (ILU) solvers, and it requires substantially less computing operations per inner 
iteration than conjugate gradient (CG) methods, especially for non-symmetric matrices. SIP 
solver has also been used as a preconditioner in a CG solver, where it showed improved 
performance compared with standard incomplete Cholesky (IC) or ILU preconditioners2. 
However, the ILU-based solvers (and therefore also SIP solver and CG solvers which use ILU 
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or similar methods as preconditioners) have the disadvantage that they use a recursive algorithm 
and are, therefore, not vectorizable or parallelizable in a straightforward manner. 

In this paper we present a SIP solver for 3-D problems which is vectorized to a large degree, 
and which can easily be implemented in any 3-D, CFD code. The performance of the solver is 
demonstrated for several test problems and vector computers. A FORTRAN code with a 
description of the main variables is given in the appendix. Other solvers based on ILU can be 
vectorized in the same way. 

DESCRIPTION OF ALGORITHM 

Linear algebraic equation systems resulting from the discretisation of 3-D transport equations 
have the general form: 

[A]{Φ} = {Q} (1) 
where [A] is an N x N square coefficient matrix (with N being the number of grid nodes), {Φ} 
is the vector matrix of the nodal variable values ordered in a certain way and {Q} is the 
corresponding vector matrix of source terms. We consider here the case of central difference 
approximations and a structured grid with Ni nodes in ith coordinate direction (N = Nx·Ny·Nz). 
The ordering of nodes is such that surfaces z = const. (constant index K) are stacked one above 
another, and within one surface index J increases first (y-direction), then index I (x-direction). 
The one-dimensional storage index of the variable Φ, ijk, is calculated from the three-dimensional 
grid indices i, j and k as follows: 

ijk = (k- 1)·NIJ + (i - 1)·NJ + j 
with 

i=1,...,NI; j=1,...,NJ; k = 1 , . . . ,NK (2) 
NIJ = NI·NJ 

where NI, NJ and NK denote Nx, Ny and Nz, respectively. Other ordering of nodes is also 
possible. For this choice the matrix [A] has the structure shown in Figure 1. It has non-zero 
elements only on seven diagonals. The iterative solution of (1) requires that an iteration matrix 
[M] be chosen, and the process of solution proceeds as follows: 

[M]{Φm+1} = {Q} -[A- M]{Φm} 
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or 
[M]{δm} = {Rm} (3) 

where {δm} is the change in variable Φ from iteration m to m + 1 and {Rm} is the residual after 
the mth iteration, {Rm} = {Q} — [A]{Φm}. For an iterative solution method to be efficient, the 
matrix [M] should be as close to [A] as possible. The SIP method of Stone1 uses a product of 
two triangular matrices [L] and [U] (for lower and upper) as the iteration matrix, i.e.: 

[M] = [L]·[U] = [A] + [N] (4) 
The standard ILU-decomposition choses patrices [L] and [U] such that they have non-zero 

elements only on those diagonals where matrix [A] has non-zero elements, and requires that 
the elements of [M] are equal to the corresponding elements of [A]. This method, however, 
does not converge rapidly, since the resulting matrix [N] is not small, i.e.: 

[N]{Φ} ≠ {0} (5) 
Stone has realized that the solutions of partial differential equations are usually smooth 

functions of space and suggested a method of selecting the elements of [L] and [U] with the 
same sparsity as in ILU, but minimizing (5). The matrix [M] has six additional diagonals with 
non-zero elepents, compared with matrix [A], cf. Figure 2. If we set the elements on the main 
diagonal of [U] arbitrarily to unity, the elements of [M] at node P, denoted by subscript ijk, 
can be expressed in terms of elements of [L] and [U] as follows: 

MB,ijk = LB,ijk 

MBN.ijk
 = LB.ijkUN.ijk-NIJ 

MBE.ijk
 = LB,ijkUE.ik_NIJ 

MW,ijk =LW,ijk 

MNW,ijk = LW,ijk-NJ 

MS,ijk
 = LS,ijk 

MP,ijk = LB,ijk UT,ijk-NIJ + LW,ijkUE,ijk + LS,ijkUN,ijk + LP,ijk (6) 
MN,ijk = LP,ijkUN,ijk 

MSE,ijk = LS,ijkUE,ijk-1 

ME,ijk = LP,ijkUE,ijk 

MTW,ijk = LW,ijkUT,ijk-NJ 

MTS,ijk = LS,ijkUT,ijk-1 

MT,ijk = LP,ijkUT,ijk 
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The bold face printed elements correspond to nodes marked with open symbols in Figure 1. In 
the standard ILU method, the matrix [N] has the six diagonals corresponding to the bold face 
printed elements in (6), while the other elements of [M] are set equal to the corresponding 
elements of [A]. From these relations, the elements of [L ] and [U] can be uniquely calculated. 
However, as noted before, [N]{Ф} is not zero and convergence is only slightly better than in 
ADI methods. 

Stone1 recognized that, by allowing [N] to have, in addition, non-zero elements on the 
diagonals of [A] , and by using the smoothness property of the solutions of partial differential 
equations, faster convergence can be achieved. The idea was to provide a contribution in [N]{Ф} 
from the elements of the diagonals found in [A ] such that the contribution of the six diagonals 
not present in [A ] is partially cancelled, leading to: 

[N]{Ф} ≈ {0} (7) 

The above equation can be written for a single node as follows: 

NBΦB + NTΦT + NSΦS + NNΦN + NWΦW + NEΦE + NPΦP 

+ MBNΦBN + MBEΦBE + MNWΦNW + MSEΦSE + MTWΦTW + MTSΦTS ≈ 0 (8) 

where the identity of elements of [N] and [M] at the diagonals not present in [A] is assumed. 
The problem is now to define the elements NB, NT, NS, NN, NE, NW and NP, such that the above 
equation is satisfied, but without introducing any additional unknowns. The Stone's idea was 
to write approximations for ΦBN, ΦBE, ΦNW, ΦES, ΦTW, ΦTS IN terms of 'principal' nodal values 
ΦP, ΦE, ΦW, ΦN, ΦS, ΦT and ΦB of the form: 

ΦBN ≈ a(ΦB + ΦN - ΦP) 

ΦNW ≈ a(ΦN + ΦW + ΦP) etc. (9) 

where 0 < a < 1. From the assumption that (cf. (9)) 

MBN [ΦBN - α(ΦB + ΦN - ΦP)] ≈ 0 
M N W [ΦNW - α(ΦN + ΦW - ΦP)] ≈ 0 etc. (10) 

the coefficients NB, NT, NS, NN, NW, NE and NP can be expressed through the bold face printed 
elements of [M] of (6): 

NB = — α(MBN + MBE) 
NT = — α(MTW + MTS) 
NS = — α(MSE + MTS) 
NN = — α(MBN + MNW) (11) 
NW = — α(MNW + MTW) 
NE= — α(MSE + MBE) 
NP = α(MBN + MBE + MNW + MSE + MTW + MTS) 

If approximations (9) are accurate, then (8) will hold when above expressions are used. By 
requiring now that [M] = [A ] + [N] and using expressions (6) and (11), the following equations 
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for the calculation of the elements of [L] and [U] at ijkth node are obtained: 

H1 = α(LB,ijk UN,ijk-NIJ + LW,ijkUN,ijk-NJ) 

H2 = α(LB,ijkUE,ijk-NJ + LS,ijk UE,ijk-1) 
H3 = α(LW,ijkUT,ijk-NJ + LS,ijk UT,ijk-1) (12) 

LP,ijk = AP,ijk + H1 + H2 + H3 — LB,ijkUT,ijk-NIJ —LW,ijkUE,ijk-NJ — LS,ijkUN,ijk-1 

UN,ijk = (AN,ijk
 — H1)/LP,ijk 

UE,ijk = (AE,ijk
 — H2 )/LP,ijk 

UT,ijk = (AT,ijk
 — H3)/LP,ijk 

The above equations must be solved in the order written. The elements of [L ] and [U] 
corresponding to the boundary nodes are assumed to be zero. 

Since the iteration matrix [M] is made of the product of triangular matrices [L] and [U], 
solution of (3) is very cost effective. We first calculate an auxiliary vector matrix {V} as: 

{Vm} = [L - 1]{Rm} (13) 

and then the increment vector matrix {δ}: 

{δm} = [U -1]{Vm} (14) 

These two equations are solved easily by forward and backward substitution as follows: 

where 

is the residual at mth iteration at node ijk. For fixed a the calculation of elements of [L] and 
[U] matrices, (12), needs to be performed only once. For subsequent iterations, only (17), (15) 
and (16) need to be solved. Recalculation of (12) with different a reduces the number of iterations 
when an accurate solution is required, cf. Stone1. However, in CFD applications the linear 
equation systems are not solved exactly, since the matrix elements need to be updated due to 
non-linearity and coupling of equations. Since the convergence of SIP solver is rather rapid at 
the beginning, constant values of a are usually used. 
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PERFORMANCE OF THE SOLVER 

When the equations for the velocity components, pressure or pressure correction, temperature, 
etc., are solved sequentially as is the case in SIMPLE-like algorithms3, the linear equation 
systems need not be solved accurately for given coefficient and source matrices, [A] and {Q}. 
Reduction of residual levels by one order of magnitude is usually sufficient before the coefficients 
and source terms are updated. For convection/diffusion equations, with Dirichlet boundary 
conditions on at least one boundary, one or two iterations are usually sufficient. The pressure 
or pressure correction equation for incompressible flows usually has Neumann boundary 
conditions on all boundaries and converges slowly; it usually requires 5-10 SIP iterations. The 
performance of the SIP-solver in a typical fluid flow and heat transfer problem is demonstrated 
for a test case presented in Figure 3. It shows a circular cylinder lying on its side, with left base 
cold and right base hot. Calculations were performed at Rayleigh numbers of 1000 and 10000 
on a grid with 32 x 24 x 48 control volumes. Velocity vectors for the middle circular cross 
section and both velocity vectors and isotherms for the vertical axial cross section and Ra = 10000 
are also shown in Figure 3. The vertical axial cross-section shows flow and isotherms patterns 
similar to those of two-dimensional buoyancy-driven cavities, cf. Hortmann et al.4. However 
the circular cross-section reveals a very strong secondary flow with four counter-rotating eddies. 
In Figure 4 the change of the sum of absolute residuals with iterations is shown for the U- and 
p'-equation in the test flow problem. The level of residuals is reduced by more than two orders 
of magnitude in 3 iterations for U and in 8 iterations for p', for both Rayleigh numbers and a 
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given grid. The number of required iterations increases with grid refinement. However, linear 
equation systems - as noted above - need not be accurately solved, so reduction of residual 
levels by one order of magnitude usually suffices; in the present case one inner iteration for U, 
V and T and 4 for p' were found to be optimum. 

In order to investigate the dependence of the convergence behaviour on the parameter a, a 
test problem with a well known analytical solution were chosen. Laplace equation: 

(18) 

was solved using finite difference discretization on uniform grids and central difference 
approximation of the second derivatives. The boundary conditions are of Dirichlet type: 

Φ(0, x, z) = Φ(x, 0, z) = Φ(x, y, 0) = 0 
Φ(1, y, z) = yz, Φ(x, 1, z) = xz, Φ(x, y, 1) = xy 

The analytical solution of this problem is Φ(x, y, z) = xyz. Calculations were performed with 
different values of a in the range 0 < a < 1 and for various grids. The iterative procedure was 
stopped when the sum of absolute residuals had fallen by four orders of magnitude. The 
performance of SIP solver and its dependence on a is presented in Figure 5. The finer the grid 
is, the more pronounced is the dependence of convergence rate on a. For a grid with 11 x 11 x 11 
nodes, the solver needs about 2.5 times more iterations for a = 0 (which corresponds to the 
standard ILU) than with a = 0.98. For a 21 x 21 x 21 nodes grid the difference is already more 
than factor 6, and for 41 x41 x41 nodes the factor is over 20. This indicates the effectiveness 
of Stone's approximation and the superiority of SIP over standard ILU. The facts that the 
optimum value of a is problem dependent and that the efficiency strongly depends on the value 
of a are the undesirable features of the SIP solver. However, values of a ≈ (0.92-0.94) were 
found to give results close to the optimum ones for a wide range of problems; these values are 
suggested for general use. 
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For the same test problem and a 41 x 41 x 41 nodes grid, ADI solver5 is about 10 times 
slower than SIP, while the symmetric CG method with IC preconditioning6 needs about the 
same time (but less iterations) to reach a solution of the same accuracy as the SIP. However, 
SIP is applicable to non-symmetric matrices as well, while the above CG method is not. A 
non-symmetric version of the CG method requires twice as many computing operations per 
iteration than the symmetric version, and about three times as many as the SIP solver. Since 
the convection-diffusion problems from CFD result in non-symmetric matrices, SIP is obviously 
a good choice when structured grids are used. The CG solvers, on the other hand, can be used 
on unstructured meshes as well. As already noted, SIP solver can also be used as a preconditioner 
in a CG solver instead of IC and ILU methods. 

VECTORIZATION OF THE SOLVER 

The algorithm as described by (12), (15) and (16), is strongly recursive. A recursive structure 
corresponds to data dependencies which usually prevent a programmer from taking advantage 
of vector computers. Analysing the data dependencies in (12), however, shows that the recursive 
structure of SIP can partially be resolved. Let us define field variable sets: 

= {Φijk with i + j + k = l} (19) 
Superscript ] describes plane cuts through the computational space as indicated in Figure 6. 
From (12) and (15) it can be seen that for the calculation of the elements of [L], [U] and {V} 
corresponding to , field variables with index values ijk — 1, ijk — NJ and ijk — NIJ are 
necessary. For these field variables it follows from (2) that i + j + k = l — 1 is valid and hence 
they are members of . This provides for an effective vectorization, because all elements of 

can be treated as a vector. The ILU decomposition and forward substitution ((12) and (15)) 
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start with the inner point having the smallest l, i.e. i = 2, j = 2, k = 2 or lmin = 6, and end with 
the inner point having the largest value of l, i.e. lmax = NI + NJ + NK — 3, i.e.: 

(20) 

In the backward substitution (16) the opposite structure is necessary: 
(21) 

In order to be able to perform operations from (12), (15) and (16) in vector mode, we have 
to create lmax - lmin + 1 vectors {Φl} and process them in a vector loop which runs from lmin to 
lmax or in the reverse order. One could store the field variables in this fashion and have the 
whole code structured in the above sense, as done by Yoon and Kwak7 in their LU-solver. 
However, these vectors are of variable length and are usually not processed as efficiently as 
when the vectors contain data from one coordinate surface, e.g. k = const. We therefore prefer 
to store variable values as described by (2), and process all non-recursive loops (such as (17)) 
for the calculation of residuals, or calculating elements of [A] and {Q}) by simply cutting the 
vector matrices {Φ} in vectors {Φk}, k = 1,...,Nk. Processing the recursive loops in two integer 
arrays have to be predefined before calling SIP for the first time. One - mip(l) - defines the 
number of nodes belonging to surfaces where l runs from lmin to lmax. The other - ijksip(n) 
- identifies the ijk storage indices of nodes within one SIP-vector, where n runs from mip(l) + 1 
to mip(l + 1). The basic idea is that for all l = lmin,..., lmax the possible k-index range K1 is 
determined. In the next loop variable k runs over Kl. Now the dependence of the i-index range 
Jl on l and k is analysed. The third loop runs then over Il range of i. Since the index j is given 
by l - k - i, the correlation between the surface indices and the ijk storage indices can easily 
be calculated. Further details are given in the appendix and subroutine VECIND. 

The performance of the vectorized version of SIP is analysed on both the flow test problem 
of Figure 3 and on the Laplace equation model presented above. First the dependence of 
performance (measured in millions of floating point operation per second within the SIP-solver, 
Mflops) on grid fineness is studied. Figure 7 shows performance of the vectorized SIP solver on 
CRAY-YMP for the flow and heat transfer problem of Figure 3 for five levels of systematic grid 
refinement, starting from 4 x 3 x 6 CV up to 64 x 48 x 96 CV. Scalar performance is about 
20 Mflops. The lower vector performance for coarser grids is due to short vectors; once the grid 
is fine enough so that the optimum vector length is reached, further grid refinement does not 
lead to improvement of performance. It should also be noted that the most unfavourable grid 
is the one with the same number of nodes in each direction, since the vector length of {Φl} varies 
all the time. If the number of nodes in one direction is significantly higher than in the other two 



168 H.-J. LEISTER AND M. PERlĆ 



SOLVING PROCEDURE FOR A SEVEN-DIAGONAL COEFFICIENT MATRIX 169 

directions, then there is a range of indices l where the length of vector {Φl} is constant, which 
is desirable for optimum vector processing. 

Finally, performance of the vectorized SIP-solver for the Laplace problem is studied using 
uniform grids with the same number of nodes in each direction. Results of calculations on 
CRAY-YMP and FUJITSU VP200 are shown in Figure 8, where the speed in Mflops is plotted 
against the number of nodes in one direction Ni. Scalar performance on FUJITSU VP200 is 
about 15 Mflops. The grid is refined gradually, so that many more points are obtained on a 
curve which is otherwise similar to that of Figure 7. Surprisingly, on both computers there is a 
sudden drop of performance for Ni = 41 and Ni = 81. It is especially severe for Ni = 81, when 
the FUJITSU performance drops from over 200 Mflops to well below 100. This phenomenon 
has to do with internal memory access, which appears to be unfavourable only for certain 
numbers of grid nodes. 

CONCLUSIONS 

A strongly implicit solution method, after Stone1, has been extended to 3-D problems and 
implemented in a CFD code using finite volume and finite difference discredization. In sequential 
solution methods for coupled equations like SIMPLE, one inner iteration in the SIP-solver per 
outer iteration (coefficient update) is sufficient for all equations except the pressure-correction 
equation, which needs 4-10 inner iterations to reduce the residual level by approximately one 
order of magnitude. The choice of the parameter a influences the rate of convergence, the effect 
becoming more pronounced as the grid is refined. The superiority of SIP over standard ILU 
solution method also increases with grid refinement. Values of a between 0.92 and 0.94 were 
found to produce nearly optimum results for a wide variety of flow problems. 

In spite of the recursive structure of the solution algorithm, vectorization in SIP solver was 
achieved by avoiding data dependencies through indirect addressing and sweeping through the 
domain along diagonal planes. Vectorized CFD code reaches speeds of over 200 Mflops on 
CRAY-YMP computer in most routines, with SIP-solver performance of about 150 Mflops. The 
computing speed is thus increased through vectorization by a factor of 10 (on CRAY YMP) to 
20 (on FUJITSU VP200). Due to indirect addressing and variable vector length, in some cases 
the performance of the SIP solver may drop suddenly for a specific number of grid nodes in a 
particular direction. The remedy in such a case is to add or to subtract one grid point in one 
coordinate direction. Other solvers, like ILU and many variants of CG solvers with 
preconditioners based on ILU or IC, can be vectorized using the same strategy. The usual data 
structure and vectorization used in the rest of a CFD code can be retained. Due to its numerical 
efficiency, fast convergence and low number of computing operations, vectorized SIP solver is 
recommended as an effective tool for solving linear equation systems resulting from discretization 
of partial differential equations. 
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APPENDIX 

In order to implement the present solver in a CFD code which uses one-dimensional storage 
described in (2), one needs to integrate the following two routines into the code: VECIND and 
SIPVEC. The following text describes the meaning of the main variables from the two routines. 

The blank common block contains NI, NJ and NK, whose meaning was described in the 
text above. NIM, NJM and NKM correspond to NI — 1, NJ — 1 and NK — 1, respectively. 
MAXIT is the maximum allowed number of inner iterations. LK(K) and LI(I) are defined as 
(cf. (2)): 

LK(K) = (K- 1)-NIJ, LI(I) = ( I - 1)·NJ (22) 
Arrays MIP(M) and IJKSIP(IJK) were described above and are defined in the routine VECIND. 
RESMAX stands for the sum of absolute residuals normalized with its initial value which serves 
as convergence criterion. ALFA is the parameter a, cf. (9) and (12). 

The common block COEF contains elements of the coefficient matrix [A]. The elements of 
the triangular matrix [L] are named BB, BS, BW and BP and correspond to LB, LS, LW and 
LP from (12). P1, P2 and P3 correspond to H1, H2 and H3 of (12). The elements of [U] are 
named BN, BE and BT and correspond to UN, UE and UT from (12). The elements of [L] and 
[U] corresponding to the boundary modes (i = 1 or NI;j = 1 or NJ; k = 1 or NK) are assumed 
equal to zero (default in the code). 

The variable RES(IJK) is used to store the residual value at the grid nodes ((17); loop no. 
30). The residuals are then overwritten with the values of {V}, cf. (15) (loop no. 50), and {V} 
is finally overwritten by {δ}, cf. (15) (loop no. 60). FI stands for the dependent variable Ф; it 
is passed as an argument by the calling routine and may represent velocity components, 
temperature, pressure correction etc., RESH(J) is used to store the sum of absolute residuals 
along the line ij = const. (z-direction), in order to avoid a long scalar loop like loop no. 40, 
which calculates the total sum. 

The instruction CDIR$ IV DEP is the CRAY-YMP directive to ignore vector dependencies, 
since otherwise apparently recursive loops would be processed in scalar mode. The instructions 
* VOCL LOOP, SCALAR and * VOCL LOOP, VECTOR are the directives of FUJITSU 
VP200 computer forcing scalar and vector processing of the following loop, respectively. * VOCL 
LOOP, NOVREC means on FUJITSU VP200 'no vector recurrences', which is analog to the 
above CRAY-YMP directive. In the code, however, all FUJITSU directives start with a 'C' in 
the first column and are therefore ignored by other computers (CRAY ignores FUJITSU 
directives and vice versa). 

The routine VECIND needs to be called only once, before the first execution of the routine 
VECSIP. It runs in scalar mode, but due to the low number of operations and only one execution, 
it does not reduce the efficiency of the code. Alternatively, the arrays MIP(M) and IJKSIP(IJK) 
may be calculated while generating the grid or elsewhere and provided as input data. 
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